# diGamma function

double diGamma (double x)

Computes the Digamma function which is mathematically defined as the derivative of the logarithm of the gamma function.

This implementation is based on Jose Bernardo Algorithm AS 103: Psi ( Digamma ) Function, Applied Statistics, Volume 25, Number 3, 1976, pages 315-317. Using the modifications as in Tom Minka's lightspeed toolbox.

## Implementation

``````double diGamma(double x) {
const double c = 12.0;
const double d1 = -0.57721566490153286;
const double d2 = 1.6449340668482264365;
const double s = 1e-6;
const double s3 = 1.0 / 12.0;
const double s4 = 1.0 / 120.0;
const double s5 = 1.0 / 252.0;
const double s6 = 1.0 / 240.0;
const double s7 = 1.0 / 132.0;

if ((x.isInfinite && x.isNegative) || x.isNaN) {
return double.nan;
}

// Handle special cases.
if (x <= 0 && x.floor() == x) {
return double.negativeInfinity;
}

// Use inversion formula for negative numbers.
if (x < 0) {
return diGamma(1.0 - x) + (constants.pi / trig.tan(-constants.pi * x));
}

if (x <= s) {
return d1 - (1 / x) + (d2 * x);
}

double result = 0.0;
while (x < c) {
result -= 1 / x;
x++;
}

if (x >= c) {
var r = 1 / x;
result += stdmath.log(x) - (0.5 * r);
r *= r;

result -= r * (s3 - (r * (s4 - (r * (s5 - (r * (s6 - (r * s7))))))));
}

return result;
}``````